
 

 
 
 
 

Introduction 
This document goes in depth about all the scripts one by one, and is intended for educators or                                   
for developers who want to know more about the Unity Playground. 
For basic information about the Playground and how to get started with it, please check the                               
Getting Started guide (on the Learn website, included in the Playground as a PDF, or online                               
here).   

https://unity3d.com/learn/tutorials
https://docs.google.com/document/d/1y-Bzwym0CeFF620az8QnWcsiOpMrvRDHitWxjUcqjfc/edit#


Table of Contents 
 

 
Introduction 1 

Table of Contents 2 

Movement scripts 4 
Auto Move 4 
Auto Rotate 6 
Camera Follow 7 
Follow Target 9 
Jump 10 
Move 11 
Patrol 13 
Push 15 
Rotate 17 
Wander 18 

Gameplay scripts 19 
ObjectCreatorArea 19 
ObjectShooter 20 

Projectile IDs 21 
PickUpAndHold 22 
TimedSelfDestruct 23 

Attributes 24 
BulletAttribute 24 
CollectableAttribute 25 
DestroyForPointsAttribute 26 
HealthSystemAttribute 27 
ModifyHealthAttribute 28 
ResourceAttribute 29 

Defining resource types 30 

Conditions 31 
Gameplay Actions 31 
Custom Actions 32 



ConditionArea 34 
ConditionCollision 35 
ConditionKeyPress 36 
ConditionRepeat 37 

Actions 38 
Adding and removing Actions 38 

ConsumeResourceAction 39 
CreateObjectAction 40 
DestroyAction 41 
DialogueBalloonAction 42 
LoadLevelAction 44 
OnOffAction 45 
TeleportAction 46 

 

   



Movement scripts 
 
This category of scripts is all about moving GameObjects around, whether it is the player, 
hazards, or non-playing characters. 
Being the Playground all based on physics, they almost all require a Rigidbody2D to produce 
movement, and potentially some type of Collider2D if you want the object to be able to interact 
with others. 
 
 
 
 
 
 

 
Auto Move 

Requires: Rigidbody2D 
 

 
 
AutoMove applies a continuous force to GameObject. Useful for things such as rockets, arrows, 
and other self propelled objects. 
 
The direction is expressed through a Vector2 and includes the strength, and it can be absolute 
or relative to the object's rotation. 
 
In the Scene view, a green arrow gizmo represents the direction of the push, while its size 
represents the strength. 
 



 

 
 
 

Note: If you are considering using this script on an prefab created with the help of the 
Object Shooter script, remember that Object Shooter already applies a force to objects 
when shooting them. In case of a non self-propelled object (like a catapult rock), you 
don't need Auto Move on the projectile. 

   



 
Auto Rotate 

Requires: Rigidbody 2D 
 

 
 
AutoRotation applies a continuous rotation to a GameObject on the Z axis. It can be used to add 
movement to a decorative object, but also to create rotating obstacles in conjunction with a 
ConditionCollision script. You can specify the speed, and setting a negative one makes the 
object rotate counter-clockwise. 
 
In the Scene view, a green arrow gizmo represents the direction of the rotation. 
 

 
   



 
Camera Follow 

Requires: Camera 
 

 
 
Use CameraFollow on a GameObject that has a Camera component. This is useful for action 
adventure games where the camera is centred on the Player. Assign a moving GameObject in 
the scene as the Target. 
 

Note: Add this script to the Camera, not to the object being followed! 

 
If you tick the property Use Bounds, you will be able to constrain the movement of the Camera 
to a rectangle. 
 

 
 



You can adjust the values of the bounds through the Inspector or in the Scene View with the 
yellow rectangle gizmo: 
 

 



 
Follow Target 

Requires: Rigidbody2D 
 

 
 
FollowTarget forces the GameObject to follow a specified target indefinitely. 
 
The Look at target option allows to select if the object orients itself to look at the target. See the 
Move script for more information on it. 
 

Tip: You can assign this script to an enemy and use the player as a target to create a 
constant threat, or you can create a queue of characters by chaining them to each 
other with a series of Follow Target scripts. 

 
   



 
Jump 

Requires: Rigidbody2D (and a Collider to be able to land!) 
 

 
 
A simple script that propels an object upwards when a specific key is pressed, useful to create a 
jump behaviour. The Key property is the keyboard key that is used to jump. 
 
To stop the player from jumping in the air, check Check ground and select a tag. Then, you need 
to tag anything you want to consider ground with that tag. As soon as the GameObject collides 
with the “ground”, it is able to jump again. 
 
If Check ground is not checked, the character is able to jump multiple times in the air. That 
might be useful to create a wing flap more than a jump. 
 

Tip: You might want to tune the Jump Strength property together with the Friction 
property of the Rigidbody2D, to obtain exactly the jump dynamics that you want. 

 
   



 
Move 

Requires: Rigidbody2D 
 

 
 
This scripts applies a constant force to the GameObject on two axes, while pressing either the 
Arrow keys or WASD. 
 
The Type of Control property assigns which control scheme to use. You can have two of these 
scripts in the scene and assign one to each player, to create multiplayer games played on the 
same keyboard. 
 
The Movement Type property allows to restrict the movement on only one axis. You can think of 
it as if it’s moving on a railing, but you can also combine it with other movement scripts to 
create more refined movement. For instance, you can create a platformer controller by using 
this script and forcing it to the horizontal axis, in conjunction with a Jump script. 
 



Note: Keep in mind that even if the force you apply is on one axis, nothing is stopping 
the object from moving on the other axis as a result of a collision, so if this 
GameObject is hit by another one that might disrupt the gameplay. To account for it, 
check the Freeze Position option for the appropriate axis on the Rigidbody2D. 

 
Orientation gives you control over whether the object should rotate to face the direction of 
travel. This is useful for vehicles (spaceships, cars, boats, etc) and in general Sprites that are 
seen from the top. 
 
If it is enabled, you can choose which side is used as the forward direction with the Use Side 
property. This depends on how the Sprite has been drawn. 
 

 
 
In the image above, for instance, you would set it to Up for the spaceship, to Down for the fish, 
while you would leave Orientation off for the bee because it’s framed from the side and not from 
the top, so rotating the Sprite would look strange. 
   



 
Patrol 

Requires: Rigidbody2D 
 

 
 
The Patrol script allows you to move an object along a path made of waypoints. The waypoints 
are organised in a list (Stops), so you can add, remove, or reorder them easily. The Reset 
Waypoints button clears the list and then adds only one stop. 
 
The GameObject returns to the starting point once all the waypoints have been walked, and then 
restart on the path. 
 
As with other Movement scripts, Orientation gives you control on how to orient your Sprite while 
moving. See its description in Move for move information. 
 



As you create waypoints, they are visualised in the Scene View as Translate handles. You can 
move them around in here, or in the Inspector by changing the position values. 
 

 
 
A little blue arrow marks the direction of movement. 
   



 
Push 

Requires: Rigidbody2D 
 

 
 
Push applies a continuous force in one direction when holding a specific key on the keyboard. 
It’s useful to create a controller for vehicles, rockets, etc. and you can use it in combination with 
Rotate to allow steering. 
 
In the Scene View, you will see a green arrow gizmo that shows you the direction and strength 
of the force (see below). 
 
By setting the Axis property, you can control in which direction to push (Y means up, X means to 
the right). To achieve a push in the opposite direction, simply set Push Strength to a negative 
value. 
 
In conjunction with Axis, the Relative Axis property controls whether the push “rotates” with the 
GameObject or whether it is applied in absolute terms. You will not see a change in the gizmo if 
the object has no rotation. To understand the difference, look at the images below. 
 



With Relative Axis on, rotating the object means that the direction rotates with it (it’s basically in 
Local Space): 
 

 

 
 
When Relative Axis is off, the direction is absolute (basically in World Space): 

 

 

 
 
The tooltip below the option reflects the change. Most of the time you want to keep it on so that 
the vehicle moves on its forward direction.   



 
Rotate 

Requires: Rigidbody2D 
 

 
 
Rotate is a script that applies a torque - that is, a rotation on the Z axis. Like Move, this is 
controlled with the left/right Arrows, or AD keys. You can use it together with a Push script to 
create a vehicle-like controller, where you can steer and move forward in the direction the 
vehicle is pointing to. 
 

Tip: If you don’t like the centre of rotation of your object, you can parent it to another 
GameObject and then apply the Rotate script to that one. For example, think of a 
bicycle, where the centre of rotation is on the back wheel. 
 
This way you have much more control on the centre (gizmo), without needing to 
change it in the actual Sprite asset. 

   



 
Wander 

Requires: Rigidbody2D 
 

 
 
With Wander, the GameObject randomly moves around in short bursts. The movement speed is 
controlled by Speed, which as usual goes together with the Friction property in the Rigidbody2D 
to make it feel right. 
 
Direction Change Interval controls the timing (in seconds) after which the object goes in a new 
direction. Setting it very low means a lot of shorter, sudden movements. 
 
Keep Near Starting Point means that the GameObject performs a check every now and then, 
and if it’s straying too far, it heads towards the initial point in its next movement. 
 

Note: If you set the Speed too high or there’s not enough Friction on the Rigidbody2D, 
the object might still be able to wander off very far! 

 
As with other Movement scripts, Orientation gives you control on how to orient your Sprite while 
moving. See its description in the Move script for move information.   



 

Gameplay scripts 
 
Gameplay scripts are a miscellaneous category of scripts to produce gameplay effects. They 
act on their own, meaning they don’t require Conditions to activate them. 
 
 
 
 
 

 
ObjectCreatorArea 

Requires: BoxCollider2D 
 

 
 
ObjectCreatorArea is a script that generates new objects from a prefab, in a rectangular area. To 
work it requires a BoxCollider2D (applied automatically), which defines the area where the 
instances appear. 
 
The Prefab to Spawn property can accept an object from the Scene, but it’s good practice to 
create a prefab and assign that instead. If you assign a normal GameObject from the Scene, the 
component displays a warning. 
 
The Spawn Interval property determines the interval between generated objects, and it’s 
expressed in seconds.   



 
ObjectShooter 

Requires: nothing 
 

 
 
ObjectShooter is a script that allows to propel or shoot a prefab when pressing a key (by default 
Space). You can use it to create weapons shooting projectiles or lasers, a tennis ball machine, 
or any kind of item that propels something out repeatedly. It works in conjunction with 
BulletAttribute (see below). 
 
Often you want to assign this script to an empty object, parent it to another object that has 
some kind of graphics, and use it as a spawning point. This way you can control exactly where 
the projectile is emitted from. 
 
The Prefab to Spawn property can accept an object from the Scene, but it’s good practice to 
create a prefab and assign that instead. If you assign a normal GameObject from the Scene, the 
component displays a warning. 
 
Creation Rate controls the interval between shots, and it’s in seconds. Shot Speed determines 
the speed, and Shot Direction the direction as a Vector2. 
 



Relative to Rotation allows the direction mentioned above to be rotated with the GameObject, 
so if (for instance) you use this script on an object like a spaceship that rotates, the shooting 
direction is realistic. Leaving it off means the shooting direction is in World Space. 
 
When you apply this script, a green arrow gizmo will be visualised in the Scene View. 
 

 
 
The size of the arrow is not connected to the strength of the shot. 
 

Note: You can also set the shooting speed to zero. This way the Player can leave 
behind objects as it moves. Don’t get fooled by the name of the script which mentions 
“shooting”: the generated object doesn’t need to be a projectile! 

 

Projectile IDs 
Finally, ObjectShooter also has the ability to assign a player ID to the projectiles. This works in 
conjunction with the BulletAttribute script, which needs to be assigned to the projectile prefab 
that you want to shoot out. Doing so means that if the projectile hits another object that has the 
DestroyForPointsAttribute script, points are assigned to the correct player. 
 
To make sure ObjectShooter assigns the correct ID, you need to tag the GameObject as Player 
or Player2. 
 

Note: If you don’t tag the GameObject, the bullet is considered as coming from Player1, 
so for single-player games you don’t need to worry about tagging. 

   



 
PickUpAndHold 

Requires: nothing 
 

 
 
This script is used to give a character the ability to pick up (and drop) something, like an item or 
a ball in a sports game. Coupled with clever use of a ConditionArea script, you can create 
gameplay that revolves around picking up an object and delivering it to a specific area. 
 
To make an object “pickable”, you need to assign it the Pickup tag and give it a Collider2D of any 
kind. You probably want to make the Collider a trigger, otherwise the object collides with the 
player and is harder to pick up. If the object has a Rigidbody2D, it is made kinematic and 
stopped before being parented to the character. 
 
Pickup Key and Drop Key define which key needs to be pressed to pickup and drop the item. 
They match by default, but they don’t need to. 
 
The Pick Up Distance defines the maximum distance that the object can have from the player to 
be picked up. If multiple pickup objects are present, the closest is picked up. 
   



 
TimedSelfDestruct 

Requires: nothing 
 

 
 
TimedSelfDestruct is a utility script to get rid of objects that are no longer needed in the scene 
after a certain time. Time to Destruction is the time in seconds after which the object 
disappears. 
 
Use it on projectiles, and any generated object to make sure the scene doesn’t get cluttered. 
Also, if your game is generating a lot of objects, in time it might slow down. Putting 
TimedSelfDestruct on those objects - even if the timer is high - helps the game run better.   



Attributes 
 
Attributes are a category of scripts that usually don’t do much on their own: they just define 
qualities that object have, and then some other script is going to act based on those Attributes. 
They have a role similar to Tags, but being scripts they can come with extra data. 
 
 
 

 
BulletAttribute 

Requires: Collider2D of any shape 
 

 
 
The Bullet script has no functionality of its own, but it holds a reference to which Player has shot 
the projectile. This number (playerID in the code) can be 0 (player 1) or 1 (player 2). 
 
The ID is automatically set by the ObjectShooter script when the projectile is launched. 
 

Note: If for any reason you want to set the playerID property in the Inspector, open the 
BulletAttribute script and remove the attribute [HideInInspector] from the property. 
 
This could be useful in case the projectiles are created by a script that is not 
ObjectShooter. 

 
   



 
CollectableAttribute 

Requires: Collider2D of any shape 
 

 
 
CollectableAttribute awards a point to any player who touches the object. As such, it requires a 
Collider2D and potentially that this is marked as a Trigger to avoid collisions. 
 
Its only property, Points Worth, allows to assign a different value to each object. 
 

Note: To see the total score on screen, a UI prefab needs to be present in the Scene. 
Refer to the Getting Started manual for more information on the UI prefab. 

   



 
DestroyForPointsAttribute 

Requires: nothing 
 

 
 
DestroyForPointsAttribute is good for targets and enemies in shooting games. It destroys the 
GameObject on collision with another object, only if this has the BulletAttribute script. Also, it 
awards points to the Player who originally shot the bullet. 
 
See BulletAttribute and ObjectShooter scripts for more information on how IDs are assigned to 
bullets. 
 

Note: To see the total score on screen, a UI prefab needs to be present in the Scene. 
Refer to the Getting Started manual for more information on the UI prefab. 

   



 
HealthSystemAttribute 

Requires: nothing 
 

 
 
The HealthSystemAttribute can be added to characters, enemies or objects. It allows them to 
take damage, and potentially be removed from the game if this goes to 0 - which in the case of 
the Player it might mean Game Over. 
 
The script works in conjunction with the ModifyHealthAttribute, which is necessary even on 
bullets. Similarly, an object with ModifyHealthAttribute doesn’t affect an object that doesn’t 
have HealthSystemAttribute. 
 
HealthSystemAttribute doesn’t enforce the presence of a Collider2D, but it’s recommended to 
have one if you are relying on collisions to subtract health from your player. 
 

Note: To see the player’s health on screen, a UI prefab needs to be present in the 
Scene. Refer to the Getting Started manual for more information on the UI prefab. 

   



 
ModifyHealthAttribute 

Requires: a Collider2D of any shape 
 

 
 
This attribute makes any physical object capable of subtracting or adding health to any object 
that has the HealthSystemAttribute. It is useful for bullets, hazard zones, etc. but also for things 
that can heal, like medipacks, food, and more. 
 
Destroy When Activated is a property that, when checked, removes this object the first time it 
produces its effects. Use it for bullets, consumables, and anything that has to act only once. 
 
The Health Change property indicates the change in health that this object produces. If it’s 
negative, it’s damaging. If positive, it is healing. The last line in the Inspector can turn red or blue 
depending on which “mode” you are on. 
   



 
ResourceAttribute 

Requires: a Collider2D of any shape, and a SpriteRenderer 
 

 
 
ResourceAttributes, together with ConsumeResourceAction, opens the ability to include 
resources and an inventory to games made with Playground. Touching an object that has this 
script picks it up, and adds it to an inventory displayed by the UI. 
 
The script requires a SpriteRenderer since the Sprite is used to display an icon in the lower-left 
corner, alongside a number representing the amount of that resource the player has: 
 

 
 
Picking up more resources of the same type adds up to the number. A ConsumeResourceAction 
script can then request and consume them. See its description for more information. 



 
With resources, you can create a crafting system (collect resources, then use them to “pay” and 
get an item in return) or simply a door/key system, where each door needs the right key to open. 
 
You define which type this resource belongs to with the Resource of Type property (see below), 
and optionally you can specify an Amount (useful for coins and money). 

Defining resource types 
Resource types can be defined by clicking on the Add/Remove types button. This focuses the 
editor on a ScriptableObject called “InventoryResources”. On this object, a list of strings defines 
all the available types of resources in the game. 
 

 
 

Several have already been added for your convenience, but you can add and remove more to 
create more custom gameplay. Once you add a resource type, be sure to go back to the object 
that has the ResourceAttribute script and assign it. 
 

Note: Resource types are shared between all scenes, so if you remove the base types 
(Coin, Star, etc.) some Example scenes like Roguelike will stop working. 
 
Moving the location of the “InventoryResources” object will also break the system. 

   



Conditions 
 
Conditions are very similar to If Statements in programming, meaning that they act as a 
gateway to other behaviours. If the condition is verified, then the attached Actions are executed. 
See Action scripts for more details on what Conditions can execute. 
Condition scripts have a little purple “if” tag at the top-left corner of their icon. 
 

 
 
All Condition scripts have some common properties which are described below. 

Gameplay Actions 
The Gameplay Actions is a list of Action scripts that are executed when the requirement of this 
Condition script is met. Once that happens, Unity executes the Actions in this list until one of 
them fails (only a few Action can fail). If the Action doesn’t fail, then the next one is executed. At 
the end of the list, Custom Actions (if present, see below) are carried out. 
 
A list of empty Actions would look like this: 
 

 
 
Pressing the plus icon reveals a list of the Actions available to add: 
 



 
 

They correspond exactly to the scripts in the Action category. If you select any of them, the 
script is added as a component and automatically connected to the list. 
 

Note: Action scripts need to be connected in the Gameplay Actions list to work. Simply 
adding an Action script to a GameObject will not execute it. 

 

Tip: At the end of the dropdown, you also have an option to add an empty slot. That’s 
really useful to be able to connect an Action present on another GameObject. This way 
you can break your logic into parts, making it easier to manage. 
To see this in practice, open the Roguelike example game and select the object named 
InvisibleTrigger. Notice how 2 of the Actions are on separate objects parented to this 
one. 

 

Custom Actions 
Similarly to Gameplay Actions, Custom Actions are executed when the requirement of the 
Condition script is met. It’s not necessary to use them, so if Use Custom Actions is unchecked, 
no custom action is executed. 
 
Checking the option reveals a list of Unity Events, in which you can connect here anything you 
would normally use an UnityEvent for. 
 



 
 
Because of this, they really allow you to expand the gameplay aspect of your game: if you know 
programming, you can write a simple script and expose a public function, and then connect it in 
here. This way your script can be called by one of the default Condition scripts of the 
Playground. This is a great way for teachers to quickly extend the functionality of the 
Playground during a workshop. 
 
Another use would be to connect in here standard Playground public functions. A good example 
is the UI Script and its GameWon and GameOver functions. By wiring one of them into the 
Custom Actions list of a Condition, you can for instance create a winning condition when an 
object collides with something else, or enters an area. 
   



 
ConditionArea 

Requires: a Collider2D set as Trigger 
 

 
 
ConditionArea requires a Collider2D set as trigger. Event Type determines when the event 
occurs: on entering the area, on leaving it, or while staying inside (if you select this last one, a 
Frequency parameter is revealed to determine how often it happens). 
 
Because you probably don’t want any object to trigger the event, Filter by Tag allows to restrict 
the event happening only if a specific category of objects enters the area. It is common to use 
Player, but you can use whatever you prefer. 
 
Happen Only Once allows the condition to be ignored after the event has happened once. 
 
Gameplay Actions and Custom Actions are common to all Conditions, so you can find more info 
in the general sections: Gameplay / Custom. 
   



 
ConditionCollision 

Requires: nothing 
 

 
 
ConditionCollision is a simple condition to make something happen when an object collides 
with the one that has this script. As with other conditions, you can filter which type of object 
actually produces the event by setting a tag in Filter by Tag.  
 
Happen Only Once allows the condition to be ignored after the event has happened once. 
 
Gameplay Actions and Custom Actions are common to all Conditions, so you can find more info 
in the general sections: Gameplay / Custom. 
   



 
ConditionKeyPress 

Requires: nothing 
 

 
 
ConditionKeyPress is a generic way of binding an Action to a key press. In addition to choosing 
which key with Key to Press, you can choose which type of key event to listen to with Event 
Type: Just Pressed (similar to GetKeyDown), Released (GetKeyUp) or Kept Pressed (GetKey). As 
with other continuous actions, Kept Pressed mode has a Frequency property. 
 
Happen Only Once allows the condition to be ignored after the event has happened once. 
 
Gameplay Actions and Custom Actions are common to all Conditions, so you can find more info 
in the general sections: Gameplay / Custom.   



 
ConditionRepeat 

Requires: nothing 
 

 
 
To make a programming comparison, ConditionRepeat is more like a WHILE than an IF. It 
executes the list of Actions repeatedly without user input or interaction. It supports a Frequency, 
and an Initial Delay. 
 
Gameplay Actions and Custom Actions are common to all Conditions, so you can find more info 
in the general sections: Gameplay / Custom.   



Actions 
 
Actions are scripts that don’t work on their own, but need to be executed by Conditions. Only if 
the Condition is verified, the Action is executed. You can recognise Action scripts because they 
have a little yellow “then” tag at the top-left corner of their icon. 
 

 
 
Action scripts all feature the concept of “success”. It means that some actions can fail, and if 
they do, the Condition that is playing them will interrupt the chain of Actions and stop. 

Adding and removing Actions 
Actions can be added like any other regular component, but on their own they won’t do anything 
- they always need to be connected to a Condition. 
 
For this reason, it makes sense not to add Actions in the usual way but to use the dropdown 
menu at the bottom of Conditions’ Gameplay Actions list. This both adds the Action component 
and connects it to the list. Similarly, the minus icon both removes the item in the list and the 
component from the GameObject, leaving it clean. 
 

 
 
If you want to place an Action on another object that has the Condition, simply add the Action to 
it as a normal component, then go to the list and use the last option, “Empty Slot”. Finally, you 
need to drag the GameObject that has the Action onto the list slot that you just added. 
 
More info in the Gameplay Actions section of Conditions.   



 
ConsumeResourceAction 

Requires: nothing 
 

 
 
ConsumeResourceAction is an action that acts only if a certain condition is verified: the 
specified Type of Resource needs to be present in the player’s inventory in the quantity 
specified in Amount Needed. 
 
If this is true, that amount of resources is consumed and the following Actions are executed. 
If false, then no resource is consumed and the list of Actions is stopped (meaning any following 
Action is not executed). 
 
Like in the ResourceAttribute script, the Add/Remove types button allows you to define resource 
types. See Definining resource types for more info and a rundown of what resources mean. 
   



 
CreateObjectAction 

Requires: nothing 
 

 
 
CreateObjectAction generates a new object from a prefab (Prefab to Create). 
 
To decide where the new object is created, you can use New Position, which initially is in World 
Space (meaning 0,0 is the origin). When Relative to this Object is checked, New Position can be 
considered Local Space. 
   



 
DestroyAction 

Requires: nothing 
 

 
 
DestroyAction can be used to remove objects from the game. 
 
The Target property can have two values: This Object (pretty self-explanatory) and Object That 
Collided. When using the latter, this Action needs to be connected to either a ConditionArea or 
ConditionCollision, or it will fail. 
 
You have the option to specify a Death Effect, that is another object that gets generated when 
the Target object is destroyed. This could be a particle system, or other objects (like debris, a 
broken version of the object being destroyed, etc.). 
   



 
DialogueBalloonAction 

Requires: nothing 
 

 
 
The DialogueBalloon script allows to put simple dialogues in the game. You can see an example 
of it in the Roguelike example scene. 
 

 
 
The first block of properties, Text to Display, Background Color and Text Color are pretty 
self-explanatory. 
 



Target Object, if set, allows the text to appear above a character or an object. If it’s not set, the 
text just appears in the middle of the screen. 
 
Disappear Mode allows for two values: Button Press requires the user to press a key (Key to 
Press) to remove the dialogue, while with Time the dialogue disappears after the seconds 
specified in Time to Disappear. 
 
Regardless of how the dialogue is removed, you can connect another DialogueBalloonAction in 
the last slot, Following Text, to create a continuous dialogue. 
 

Tip: Use chained DialogueBalloonAction scripts with no target and in Button Press 
Disappear Mode to create small tutorials for your game. 
 
Or, by chaining several DialogueBalloonActions and focusing them on different 
characters with the Target Object property, you can create conversations between two 
or more characters. 

   



 
LoadLevelAction 

Requires: nothing 
 

 
 
LoadLevelAction adds the ability to load Unity scenes from Conditions. 
 
The Scene to Load property displays a dropdown menu which includes all of the scenes that 
have been added to the Build Settings menu (File > Build Settings…). To be loaded, a scene 
needs to be added to the list and also be enabled. 
 
The first item, “RELOAD LEVEL”, just reloads the current scene so it’s useful to reset the state of 
the game after game over. 
   



 
OnOffAction 

Requires: nothing 
 

 
 
OnOffAction is a simple action to turn an object on and off, meaning setting its Active flag to 
true or false. You need to select the target in Object to Affect in order for this to work. 
 
Just Make Invisible allows you to turn on/off a SpriteRenderer instead, meaning the object is 
still part of the gameplay, including any collision events it might have. 
 
OnOffAction always “flips the switch”, setting the active flag to its opposite. This means the 
second time the Action is executed on the same object it restores its previous state, and so on. 
 

Tip: If you want to set an object on/off in an absolute way (meaning the second time 
there will be no effect), you can use just a regular UnityEvent, enabling Custom Actions 
on the Condition and selecting SetActive on the target GameObject: 
 

 

   



 
TeleportAction 

Requires: nothing 
 

 
 
TeleportAction moves an object instantly to a new location. If nothing is assigned in Object to 
Move, the same object that has the script is teleported. The New Position property is in World 
Space. 
 
For objects that have a Rigidbody2D, enabling Stop Movements means that in addition to be 
teleported, they are also stopped, meaning their speed and torque are zeroed - which is good for 
resetting the game state (for instance, after scoring in a sports game). 


