

Welcome
Whether you’re an aspiring maker or an educator in game development: Welcome to Unity!
Unity Playground is a framework to create 2D, physics-based games, and it’s perfect for
teaching beginner game developers to make games in Unity without coding. It can also be used
to introduce to game design or level design.

Unity Playground removes the need to code by providing an array of one-task Components
that are easy to use and mix. By combining them together, you can create physics-based 2D
games spanning several game genres.

The icons of some of the scripts

Enjoy using the Unity Playground!

Table of Contents

Welcome 1

Table of Contents 2

Getting Started 3
Prerequisites 3
Making your first game 3

Creating the player 4
Adding obstacles and collisions 6
Adding a goal 9

Next steps 10

General Concepts 11
Info and Warnings 11
Collisions and Triggers 11
Tags 12
Importing Custom Graphics 12

Advanced Concepts 13
Cheatsheets 13
Project Structure 13

Assets folder 14
Tags 14
User Interface 15

Custom game types 16
Custom Inspectors 16

Disabling the Playground 16
Tilemaps 17

Appendix 18
Contributing 18
Credits 18

Getting Started

The Playground is intended to be very simple to get into, and you can get acquainted with the
basics in less than 30 minutes. You just need to understand the project structure (see Project
Structure) and the concepts that the Playground implements (General Concepts). Then you
probably want to take a look at the scripts, starting with the ones grouped in the Movement
category.
If you want more information on a specific script, the Reference Guide is a good place to go (on
the Learn website, in the .pdf included in the project, or online here).

Prerequisites
Before using the Playground you should already have a good grasp of Unity’s core concepts. A
very good resource are the Interactive Tutorials that you can find in the editor launch window or
the Unity Hub, under the Learn tab. As an alternative, you can also go through the Interface &
Essentials section in the official Tutorials.

The 4 Interactive Tutorials in the launch window

If you are an educator and you are looking to use the Playground for a workshop or a course,
you can find interesting pointers in the Teaching section.

Making your first game
Making a game with the Playground is super easy! Let’s make a very simple action game,
featuring a spaceship flying around and trying to avoid some asteroids.

https://unity3d.com/learn/tutorials/s/unity-playground
https://docs.google.com/document/d/15Vb-pydcUxDdm3Gm-jJeAofJIbEw4O5IXf-_B5p8GmQ/edit#
https://unity3d.com/learn/tutorials/topics/interface-essentials
https://unity3d.com/learn/tutorials/topics/interface-essentials

1 - Creating the player
Start by dragging a spaceship image from the /Images/Spaceships folder, directly into the
Hierarchy window. Because it has been imported as a Sprite, Unity will create a GameObject for
you. This is going to be the player, so let’s call the object “Ship”, and tag this GameObject as
‘Player’ at the top of the Inspector window using the Tag dropdown. We will come back to tags
later.

The object is now tagged as Player

Let’s make the ship move now. We need two components: Move to provide the interactivity, and
a Rigidbody2D to make sure that the ship follows the laws of physics. Let’s drag a Move script
from the /Scripts/Movement folder, onto the Inspector of the ship.

If dragging is a problem, you can also use the Add Component dropdown menu directly at the
bottom of the Inspector, then type ‘move’. The script should appear as a first result.

The Add Component dropdown in the Inspector

You will notice that as soon as you add the Move script, a Rigidbody2D component is also
added. This is because Move requires the Rigidbody2D to work.

Note:

Scene Gizmos
It might happen that the icons for the Playground script are huge, covering your graphics.

The Move icon is covering the whole ship!

If this happens, you can reduce their size by using the dropdown Gizmos in the Scene view. Drag
the 3D Icons slider to the left until the icons are the right size.

The 3D Icons slider controls the size of the gizmos in the scene

2 - Tuning the physics
Now we need to tune the physics values of our ship. On the RigidBody2D component we want
to modify the Gravity to 0, so the ship doesn’t fall down. Also feel free to choose the preferred
control method (arrows or WASD), and check Orient to direction if it makes sense for your
graphics, then choose the orientation axis. Now press Play at the top of the editor to test the
game.

You will probably notice that the ship drifts a lot, making it hard to control. Adjust the Friction on
the Rigidbody2D, putting it to 10. If you play now, you will see that the drift is gone, but the
object is also slower, way slower. This is because the force that was moving it is now countered
by the friction.

As such, we need to adjust the Speed parameter too in the Move component. Bring it to 8, and
press Play again. You will see the ship is way easier to control now. We just made our very first
gameplay tweak! Congratulations: you are a game designer!

Note:

Play Mode
If you edit component values while in Play mode, you will lose your changes once the game is
stopped. Remember to make changes only if you are not in Play mode! You should make
changes in Play mode only if you are testing temporary values that you don’t mind losing.

3 - Adding obstacles and collisions
We have something playable, but it’s not really a game. Let’s add some obstacles that the ship
has to navigate around by dragging an asteroid Sprite from the /Images folder. Like before,
Unity will create a GameObject for us.

We need to add two components: Rigidbody2D and PolygonCollider2D. The PolygonCollider2D
will make it so that this object is able to collide (touch) other objects. We need to add this
component to the ship too.

Ship and asteroid show a green border: the collision shape

Once colliders are added, try pressing Play. You will notice the ship can now push the asteroid
around. Don’t forget to tweak the Gravity of the asteroid to 0, or it will fall down! Also, feel free to
tweak the asteroid’s parameter: Friction, Angular Friction and Mass, to make it behave the way
you want. Let’s set the Mass to 10, so it becomes heavier and doesn’t fly away when touching
the ship. An asteroid that big must be very heavy!

Let’s make this asteroid a threat now. You need to add a script to the asteroid called
ModifyHealthAttribute, found under /Scripts/Attributes.

The ModifyHealthAttribute Inspector

Then, we need the ship to be able to detect this damage. To do that, there’s another script called
HealthSystemAttribute (still under /Scripts/Attributes) that we need to add to the spaceship.

The HealthSystemAttribute Inspector

This not only gives the player health, but allows us to set the initial amount. Finally, make the
asteroid a Prefab and duplicate it (shortcut: Ctrl+D for Windows, Command+D on Mac) to create
a small asteroid field around the ship.

Prefabs
Before you duplicate the asteroid, you probably want to make it into a Prefab, so you can easily
edit all asteroids at once at a later point.

If you don’t know what a Prefab is and want to know more, you can read about them in the
Manual, or watch a quick video tutorial.

Prefabs are a fundamental concept in Unity if you are making a big game or working in a team,
but for now you can also leave them aside. You can focus on your first game, and then come
back to them later when you have time.

4 - Adding a User Interface
We don’t have any feedback when the player gets hit though. So let’s add a UI to visualise the
player’s health. Drag the UserInterface Prefab from the /Prefabs folder into the scene. You will
automatically see a UI popping up when you look at the Game View, with Score and Health.

If you play the game now, you will see that hitting an asteroid will subtract one point of health!
And if you hit too many, it’s Game Over!

Now that you have a full asteroid field, it’s time to test again if you can actually navigate around
it without hitting too many. The game has to be difficult, but not too difficult! By repositioning

https://docs.unity3d.com/Manual/Prefabs.html
https://unity3d.com/learn/tutorials/topics/interface-essentials/prefabs-concept-usage

the asteroids and testing the game, you are now basically working on the game balance and
effectively doing level design.

5 - Adding a goal
So what is this game about? Let’s say we want the ship to collect some stars without crashing
into the asteroids. Once all the stars are collected, the game is won. But if you crash too much,
it’s game over!

Let’s add a star from the /Images folder by dragging it into the scene. Add a Collectable script
from the /Scripts/Attribute folder. This will make the star a collectable item, so getting one will
award one point to the player.

But how do we detect if the star has been collected? We will use collisions again. Add a
PolygonCollider2D to it, but this time we want to make it a trigger so enable the Is Trigger
property.

Note:

Triggers
Triggers are a special type of collider. They make an object intangible, so it looks like it can’t
touch other objects. But Unity will detect when the two objects touch each other, so you can
perform actions as a result.

For instance, triggers are very useful to detect if a player has reached the end of the level. Place
one just before the exit or end point, and when the player touches it, you display a You Win
message. The player doesn’t see anything, but the trigger provides you (the developer) the logic
to detect the winning condition.

6 - Winning Condition
If you play the game now, you will notice the star gets collected by the ship. At this point, you
might also want to make the star a Prefab (see note about Prefabs above), and then duplicate it
as many times as you think it’s necessary. Let’s say we have 5 in the scene. Now we want to
distribute them around so some are easy to get, while the further ones are more difficult. This
way we also create a ramping difficulty for our little game.

Finally, you want to select the UI GameObject, and on the UI script make sure that the type of
game is Score, and that the required score is 5. If this doesn’t match the number of stars in the
game, then you might actually create a game that’s impossible to win!

Press Play again, and check that you can win the game. If you get all 5 stars, you should see a
message saying “Player 1 wins!”.

Congratulations: you have just made your first game. Good job! Keep tweaking it until you’re
satisfied with the controls, the difficulty, and the level layout.

Next steps
Now that you have an initial grasp of Unity and the Unity Playground, you can go ahead and
make more complex games with it. As a first step, you probably want to take a look at the
General Concepts of the Playground to understand it better.

Remember: the Playground is meant to be flexible, so come up with your own game genres or
copy some existing game, anything is fine!

Note:
When learning how to make games, copying the gameplay of old games from the 80s (like
Asteroids, Arkanoid, Space Invaders, Frogger, and so many others…) is usually a good idea,
because they were simple. Then as you improve, you can add more and more details and refine
the interaction.

If you need inspiration, open the Examples folder and launch one of the games. Inspect the
GameObjects and see how we have made those, then try and create something similar.

General Concepts

In this section, we cover very quickly a few fundamental concepts of the Playground. If you are
new to it, you can use them to create more complex games. Before you read through these, we
suggest you go through the step-by-step tutorial.

Info and Warnings
All of the custom scripts in the Playground feature a small info box at the top, which explains in
a few words what the script does.

Info and a warning in the Camera Follow script

Similarly, many scripts have several warning messages (the ones with the yellow danger sign)
which appears when something is not right with the setup. Keep an eye out for these, they might
give you a good pointer on why a script is not working.

Collisions and Triggers
Almost all of the logic scripts in the Playground use collisions to create gameplay. This means
that things happen when 2 objects with Colliders touch each other, or when an object with a
Collider enters another object (which also has a Collider, but marked as Trigger).

So for instance you can have damage that happens on collisions with an enemy, win a level
when touching an object, collecting coins and powerups by walking into them, or open a door by
smashing the character into it - provided you have the right key!
Similarly, you can trigger a line of dialogue when your character enters an area in front of
another character (like in the Roguelike example scene).

When something doesn’t work as it should, ask yourself: did I add the appropriate colliders?

Tags
Tags allow us to divide object into categories, so that scripts can perform actions only if they
touch the right objects. Without tags, there wouldn’t be a way to differentiate between objects.

As with collisions, many scripts depend on the object to be tagged with the right tag to work. If
you are in doubt and your script is not doing what it should, read the Reference Guide to check if
you are missing a crucial tag.

Importing Custom Graphics
The Playground contains a lot of great sprites to play with, located under the Images folder.
However, you are free to use any 2D graphics you can find, or make your own!

To use an image in the Playground, you just need to drag it somewhere into the Assets folder.
The image will be imported as a Sprite, and then will be ready to be used. Simply dragging it to
the Scene or the Hierarchy will create a new GameObject, and then you will be able to use it in
the game.

Just remember that to look good, images that are not square need to have transparency,
otherwise they will display a white background. Good formats that allow transparency are .png
or .gif, while .jpg won’t include transparency. Also remember, Unity doesn’t play animated Gifs.

Advanced Concepts

Are you a teacher or educator? This section is a must-read for you! Also suggested for
advanced users who want to understand the Playground better.

Cheatsheets
It might be hard to understand how many scripts are in the Playground at first glance. For this,
the Playground comes with a series of “cheatsheets”, which consists of 6 pages with the icons
for all of the scripts and a one-line description. They are organised in categories (Movement,
Gameplay, etc.) and are colour-coded.

A preview of some pages

The Cheatsheets are included in the Unity project in both .pdf, for printing, and individual .jpgs
for the screen. In workshops with users very new to Unity, it might be nice to print out a few
copies and bind them together, to give the users a sense of the scope and show them all the
possibilities they have.

In addition to these, a seventh page features some extra challenges of different nature. If you
are running a workshop, you can use these to encourage participants to try something new, or
give them constraints (kind of like the theme of a game jam).

Project Structure
To use the project in a workshop, you can either have people download it from the Asset Store
(free of charge) or, if internet access is an issue, you can manually distribute the Assets and
ProjectSettings folders to the students.

Assets folder
The Documentation folder contains documentation in .pdf, including this very document. You
can use this “Getting Started” doc as a starting point, then dig into the details of each script by
opening the “Reference Guide”. Finally, the “Cheat Sheets” is a document you can print out and
distribute to the learners, so they can have a quick glance at the scripts and what they do, for
inspiration.

Images and Particles folders contain graphic assets which could be used as character,
enemies, or to compose the scene, but the developers are free to import new graphics if they so
desire.

The heart of the Playground, the scripts, is located in the Scripts folder organised by category.
Most of them should work out of the box, although some require objects to be tagged in a
specific way to work (read more about them in the Tags section).

There’s also a folder called Examples, in which you can find a handful of little games already
made. You can use them as learning material, or as a starting point to customise.

There’s a “special” folder in the project called _INTERNAL_. As the name implies, it shouldn’t be
touched unless you want to mess with the inner workings of the Playground. It contains base
scripts, fonts, gizmos, and other things that students shouldn’t really care about. It needs to be
in the project though, for the Playground to work correctly.

This section goes a bit deeper into some of the parts of the Playground, to better understand its
inner workings. Recommended for educators who have to assist students and fix problems in
their games.

Tags
Tags are used by some scripts to filter objects and decide when to produce their effects. Some
scripts filter objects OnCollisionEnter2D or OnTriggerEnter2D, while others (like
HealthSystemAttribute) behave differently depending if the object is tagged as Player or not.

If you import the ProjectSettings folder at the start, some extra tags are already defined.
Specifically:

● Player and Player2 have to be used on the two players to enable the UI to work properly,
damaging of players, scoring points, etc.

● Enemy, though not currently used in any script, is useful to define enemies on which to
apply the effects of bullets and weapons.

● Bullet for projectiles.
● Ground used for checking what is ground when the player jumps.

With the exception of the Player tags, many scripts allow you to define which tag to look for. For
instance, the Jump script asks you to define what is considered ground, so you don’t
necessarily need to chose the “Ground” tag. Take them only as a suggestion.

You can filter Tags in Condition scripts, so you can have something happen only when you
collide with objects tagged in a certain way, etc. The tag list updates automatically to show the
whole list of Tags so there's no possibility of making typos.

User Interface
The UI is implemented in a prefab, contained in the Prefabs folder. By just dragging the UI into
the scene, you automatically get health and score displayed for Player 1, but you can also
choose that the game is for 2 players, and then score or health will be displayed for both
players, depending on which game mode.

The UI Canvas against an empty Scene background

The UI also allows to define the type of game, between Score, Life and Endless. Depending on
the condition, the Game Over and You Win screens will be displayed:

● In Score mode, if the Player reaches the score chosen, the Win screen will be displayed.
When two players are present, the UI will only display scores and the first one to reach
the score wins.

● In Life mode, if the player reaches 0 health, Game Over will be displayed. With two
players, the health of both is displayed. There’s no way to win.

● In Endless mode, no end game screen will be displayed and there’s no way of winning or
losing the game.

Custom game types
When using Condition scripts, you can wire the GameWon and GameOver functions of the
UIScript to a UnityEvent. This way, you can create custom win and lose conditions by leveraging
collisions and other events.

Similarly, you can tap into the AddOnePoint and RemoveOnePoint functions to do the same with
score.

Custom Inspectors
Unity Playground makes heavy use of custom Inspectors, both for the Playground’s own scripts
(Move, Jump, etc.) and the default Unity Components (Transform, Collider, SpriteRenderer etc.).
The goal is to remove some complexity from the Unity UI, giving an easier time to new users.

For this reason, some variable names have been changed too (i.e. Drag in the Rigidbody2D has
been changed to “Friction”).

Disabling the Playground
You can turn the custom Inspectors on and off from the top menu bar. This allows you to
visualise what the Playground scripts are hiding. You can always make your changes, and then
turn the Playground back on. Since Playground is only customising Inspectors, it will keep
working fine.

Turn Playground off from the top menu bar

This trick is recommended for teachers who need to temporarily make changes to properties
that the Playground is hiding (for instance, editing the shape of a Collider of any type).

Tilemaps
Included in the graphic assets there is a series of tile Sprites (grass, cobblestone, wood) that
have been used to build the example games, and that you can use to build your own levels using
Unity’s Tilemap feature.

If you want to know more about Tilemap, you can find a detailed guide in the Unity Manual.
The Learn website is also full of good tutorials about it: we recommend starting with the Intro to
2D World Building video, or you can find a short text explanation in the Painting a Level section
from the 2D Gamekit.

https://docs.unity3d.com/Manual/class-Tilemap.html
https://unity3d.com/learn/tutorials/topics/2d-game-creation/intro-2d-world-building-w-tilemap
https://unity3d.com/learn/tutorials/topics/2d-game-creation/intro-2d-world-building-w-tilemap
https://unity3d.com/learn/tutorials/projects/2d-game-kit/painting-level

Appendix

Contributing
For questions, suggestions, feel free to email Ciro Continisio (or get in touch through Twitter for
quick comments). If you want to contribute to the project, check it out on Github, fork it, and
create pull requests.

Note
All suggestions will be considered, but keep in mind that the goal of the Playground is not to
have as many scripts and features as possible. Having a reasonable amount of content makes
it more focused and easier to learn. We believe that once the learners have explored the entirety
of the Playground and want more, it’s time for them to move on and create their own game from
scratch.

Credits
Unity Playground has been created by Ciro Continisio. Graphics by Stefano Guglielmana.

Special thanks to
Unity Technologies, and especially the Brighton Content team for helping with the final push to
put the Playground on the Asset Store.
Kenney.nl for the free graphics which have been used for the first iteration of the Playground.
Dioselin Gonzalez, John Sietsma for believing in the project and using it in their workshops first.
Stine Kjærbøll for some precious early feedback, and the tip for the logo design.
Nikoline Høgh and Nevin Eronde for more UX early feedback and enthusiasm.
Phil Jean for suggesting an important change which would be a turning point for the project.
Numerous contributors to the Github repository: Sophia Clarke, Ethan Bruins, Mark Suter, Jim
“Jimbo” Picton, “Arche-san”, and all the others I’m forgetting right now!
Everyone at Coderdojo Brighton and the attendees of New Employee Orientation at Unity, who
have been the first involuntary test subjects.
Finally, all the teachers and educators who are using the Playground in any capacity today!

mailto:ciro@unity3d.com
https://twitter.com/cirocontns
https://github.com/Unity-Technologies/UnityPlayground
http://twitter.com/CiroContns
http://kenney.nl/
https://twitter.com/dioselin
https://twitter.com/JohnSietsma
https://twitter.com/stinekjaerboell
https://twitter.com/NikolineUX
https://twitter.com/nevinsound
https://twitter.com/sophiaaar
https://twitter.com/Bruins1993
https://twitter.com/garlicsuter
https://twitter.com/JimboPicton
https://twitter.com/JimboPicton
https://twitter.com/arche_san

